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Thesis Outline

The aim of this thesis is to introduce a variety of signal processing methodologies
specifically designed to model, interpret, and learn from data defined on topological spaces

The primary motivation is addressing the constraints encountered with traditional
graph-based representations

This thesis emphasizes the necessity to account for sophisticated, multiway, and
geometry-sensitive interactions that are not captured by conventional graph models

The implications of these developments are potentially profound for the signal processing
and machine learning communities
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Topological Signal Processing
Goals and Motivation

Graph-based representation: data are
associated with the vertices of a graph to
capture pairwise relations encoded by the
presence of links

In many systems (biological, brain, social networks,...) the complex interactions among
data cannot be reduced to dyadic relationships

(a) In Gene Regulatory
Networks, some reactions
occur when a set of
genes interact

(b) In Social Networks,
agents can interact in a
group without having
pairwise connetions

(c) In Knowledge Graphs,
higher-order relationship
could provide further
insight and analysis
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Topological Signal Processing
Simplicial and Cell Complexes

What combinatorial topological spaces
do we need to incorporate higher-order relationships?

Go beyond graphs: Simplicial Complexes and Cell complexes

In this presentation I will focus on Simplicial Complexes for the sake of simplicity, Cell
Complexes can be seen as a further generalization

Simplicial complex: Given a finite set of vertices V, a k-simplex is a subset of V with
cardinality k + 1. A simplicial Complex X (K) of order K, is a collection of k-simplices up
to order K closed under inclusion

Example: co-authorships networks

▶ vertices A, B,C, D are authors

▶ there is an edge if two authors have
co-authored at least one paper (e.g. A-B but
not B-D)

▶ there is a triangle between three authors if
they have co-authored at least one paper
(e.g. A-B-C but not A-D-C)
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Simplicial Signal Processing
Simplicial Signals

Simplicial signals: A k-simplicial signal is defined as a mapping from the set of all
k-simplices contained in the complex to real-valued vectors

We focus w.l.o.g on complexes X (2) of order up to two, thus a set of vertices V with
|V| = V , a set of edges E with |E| = E and a set of triangles T with |T | = T are
considered. The corresponding signals are defined as:

x(0) : V → RV , x(1) : E → RE , x(2) : T → RT ,

thus graph, edge and triangle signals, respectively

Example: co-authorships networks

▶ The graph signal x(0) = [9, 2, 4, 8] collects
the number of papers written by single
authors (nodes)

▶ The edge signal x(1) = [1, 2, 3, 3, 6] collects
the number of papers jointly written by pairs
of authors (edges)

▶ The triangle signal x(2) = [3] collects the
number of papers jointly written by triplets
of authors (triangles)
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Simplicial Signal Processing
Algebraic Representation

The structure of X (2) is fully described by the set of its incidence matrices Bk, k = 1, 2,
that establish which k-simplices are incident to which (k − 1)-simplices:

[
Bk

]
i,j

=

 0, if Hk−1,i ̸⊂ Hk,j

1, if Hk−1,i ⊂ Hk,j and Hk−1,i ∼ Hk,j

−1, if Hk−1,i ⊂ Hk,j and Hk−1,i ̸∼ Hk,j

From the incidence information, we can build the combinatorial Laplacian matrices:

L0 = B1B
T
1 ,

L1 = BT
1 B1︸ ︷︷ ︸
Ld

+B2B
T
2︸ ︷︷ ︸

Lu

L2 = BT
2 B2

The term Ld is called lower Laplacian and it encodes the lower adjacency N d of edges →
Two edges are lower adjacent if they share a common vertex

The term Lu is called upper Laplacian and it encodes the upper adjacency Nu of edges
→ Two edges are upper adjacent if they are faces of the same triangle
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Sparse Signal Representation
on Combinatorial Topological Spaces

Related publications:

Topological Slepians: Maximally Localized Representations of Signals Over Simplicial
Complexes, C. Battiloro et al., IEEE ICASSP 2023

Parametric Dictionary Learning for Topological Signal Representation, C. Battiloro et al.,

EURASIP EUSIPCO 2023
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Sparse Signal Representation
Motivations and state of the art

Desiderata: Novel techniques for sparse signal representation over simplicial complexes

▶ In the context of Topological Signal Processing, a natural basis for signal
representation is given by the topological Fourier modes, generally leading to
inefficients and non-sparse signal representations (as in classical SP, DSP and GSP)

Simplicial Signal Processing (TSP):

▶ Simplicial FIR filters [Isufi21]

▶ Graph Slepians [Tsitsvero16]

▶ Simplicial Wavelets (Hodgelets) [Roddenberry22]

Contribution: We introduce novel model-based and data-driven techniques to design
overcomplete dictionaries for signals over simplicial complexes.

▶ We introduce Topological Slepians, a novel model-based class of signals that are
maximally concentrated on the topological domain and perfectly bandlimited

▶ We introduce a novel data-driven dictionary learning algorithm with guaranteed
topology-awareness and locality

▶ We test the proposed methods on a sparse representation task of real traffic data,
showing superior performance w.r.t. other state-of-the-art methods
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Parametric Topological Dictionary Learning
Simplicial Complex Filters and Dictionary Structure

A simplicial complex FIR filter acting on edge signals is a polynomial of the Laplacian
defined as:

S =
J∑

i=1

hu,iL
i
u +

J∑
i=1

hd,iL
i
d + hI, (1)

where J is a positive integer and hu,i, hd,i, h ∈ R

We build a novel class of overcomplete topological dictionaries:

D = [S1, ...,SP ] ∈ RN×PN ,

where each Sp, p = 1, . . . , P is defined as in (1) and has a different set of coefficients

We collect the coefficients in a vector h ∈ R(2J+1)P

(Localization Guarantees) The v−th atom of the p−th sub-dictionary will have:
▶ A component localized on the J-hop lower neighborhood of the v−th simplex

▶ A component localized on the J-hop upper neighborhood of the v−th simplex
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Parametric Topological Dictionary Learning
Problem Formulation

A training set of M k-topological signals Y = [y1, . . . ,yM ] ∈ RN×M is given

The aim is learning a dictionary which can represent the training signals as a sparse linear
combination of the atoms (its columns) → We need to learn the filters coefficients h

The problem is cast as the joint optimization of the dictionary coefficients and the sparse
signal representation:

(h∗,X∗) = argmin
h,X

∥Y −DX∥2F + γ ∥h∥22

subject to:

a) ∥xi∥0 ≤ K0, i = 1, . . . ,M → sparsity requirement

b) 0 ≼ Sp ≼ dI, p = 1, . . . , S → non-negative & bounded spectra

c) (d− ϵ)I ≼
S∑

p=1

Sp ≼ (d+ ϵ)I → whole spectrum coverage

d) Sp as in (1), p = 1, . . . , P → parametric dictionary

where xi is the i−th column of X ∈ RPN×M , i.e. the sparse signal representation of the
i−th training signal
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Sparse Signal Representation
Real-World Numerical Results 1

We consider the German National Research and Education Network operated by the
German DFN-Verein (DFN)

The complex consists of 50 nodes, 89 edges and 39 2-cells

The data traffic is aggregated daily over February 2005

The data measurements are expressed in Mbit/sec and collected on each link
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Sparse Signal Representation
Real-World Numerical Results 2

We then have a collection of edge signals Y ∈ R89×28

For dictionary learning, we use 16 and 12 signals as training Ytrain and test Ytest sets

As evaluation metric,we use the test Normalized Mean Squared Error (NMSE):

NMSEtest =
1

16

16∑
m=1

∥ytest,m −Dxtest,m∥22
∥ytest,m∥22

The Slepians dictionary shows superior
performance w.r.t. Topological Wavelets
(Hodgelets)

The proposed dictionary learning
algorithm achieves the best result

This is expectable, because it estimates
the underlying unknown generation model

However, Topological Slepians can be
leveraged even if no data are available 10 20 30 40 50 60 70
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Topological Attention Neural Networks

Related publications:

Generalized Simplicial Attention Neural Networks, C. Battiloro et al., Sub. to IEEE TSIPN

Simplicial Attention Neural Networks, L. Giusti∗, C. Battiloro∗ et al., ArXiv preprint 2022
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Simplicial Signal Processing
Simplcial Filters and Simplicial Convolutional Neural Networks

We saw that the (FIR) filtering of a simplicial (edge) signal zin is then defined as:

zout =

Jd∑
j=1

wd,jL
j
dz

in +

Ju∑
j=1

wu,jL
j
uz

in

where wd =
[
wd,1, ..., wd,Jd

]T
∈ RJd and wu =

[
wu,1, ..., wu,Ju

]T
∈ RJu are the filter

weights, Jd ∈ N is the lower filter order and Ju ∈ N is the upper filter order

A Simplicial Convolutional Neural Network (SCN) layer is defined as a bank of simplicial
filters followed by a point-wise non-linearity σ(·):

Zout = σ

( Jd∑
j=1

Lj
dZ

inWd,j +

Ju∑
j=1

Lj
uZ

inWu,j + ZinWh

)

where Zout ∈ RE×F ′
, Wh,Wd,js and Wu,js ∈ RF×F ′

are learnable (filters) weights
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Simplicial Attention Neural Networks
Motivations and state of the art

Desiderata: Developing Simplcial Neural Networks (SNNs) architectures equipped with

attention mechanisms

▶ In the Deep Learning community, attention mechanisms are a class of techniques
which allow to enhance some parts of the input data while diminishing other part

▶ Therefore, topology-aware attention re-weights neighbours in a task-oriented fashion

Simplicial Neural Networks (SNNs):

▶ First SNN architecture [Ebli21]

▶ Message Passing SNN [Bodnar21]

▶ Hodge-Based SNN [Yang22]

Attention Networks:

▶ Valuable Attention Models [Bahdanau15][Vaswani17]

▶ First Graph Attention Networks [Velickovic17]

Contribution: We introduce the first Simplicial Attention Network (SAN) architecture.
We generalize the original graph-attention mechanism in order to process simplex
structured data.
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Simplicial Attention Neural Networks
Layer Definition

Re-weighting the neighbours translates in learning the Laplacian entries. A SAN layer is
then defined as:

Zout = σ

( Jd∑
j=1

Lj
d,aZ

inWd,j +

Ju∑
j=1

Lj
u,aZ

inWu,j + ZinWh

)

Simplcial Attentional Mechanisms: the entries of the (attentional) Laplacians Lu,a and
Ld,a are learned via an upper and a lower attentional mechanisms au(·) and ad(·):

au : RF ′
× RF ′

× RJu → R ad : RF ′
× RF ′

× RJd → R

Under this setting, the entries of Lu,a and Ld,a are computed as:[
Lu,a

]
i,j

= softmaxj
(
au
({[

Zin
]
i
Wu,k

}Ju

k=1

{[
Zin

]
j
Wu,k

}Ju

k=1
)I
(
j ∈ Nu,i

))
[
Ld,a

]
i,j

= softmaxj
(
ad
({[

Zin
]
i
Wd,k

}Jd
k=1

,
{[

Zin
]
j
Wd,k

}Jd
k=1

)I
(
j ∈ Nd,i

))
where [Zin

]
j
is the j-th row of Zin
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Simplicial Attention Networks
Layer Illustration and Example of Attention

The SAN layer is made of three parallel branches followed by an aggreagation step →

An possible attention mechanism is a single-layer feedforward neural network with
LeakyReLU nonlinearity →
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Simplicial Attention Neural Networks
Numerical Results

Inductive (Supervised) Task. Trajectory Classification:

Transductive (Semisupervised) Task. Missing Data Imputation:
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From Latent Graph
to Latent Topology Inference

Related publications:

From Latent Graph to Latent Topology Inference: Differentiable Cell Complex Module, C.

Battiloro∗, Indro Spinelli∗ et al., ICLR 2024

Background Sparse Signal Representation Attention Neural Networks Latent Topology Inference Tangent Bundle SP Conclusions



20/27

Latent Topology Inference
Differentiable Cell Comple Module

The Differentiable Cell Complex Module (DCM) is a function that first learns a graph
describing the pairwise interactions among data points

Then, it leverages the graph as the 1-skeleton of a regular cell complex describing
multi-way interactions among data points

The inferred topology is then used in two message-passing networks, at node and edge
levels to solve the downstream task

The whole architecture is trained in an end-to-end fashion
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Signal Processing and Learning
over Tangent Bundles

Related publications:

Tangent Bundle Convolutional Learning: from Manifolds to Cellular Sheaves and Back, C.
Battiloro et al., IEEE Transaction on Signal Processing

Tangent bundle filters and neural networks: From manifolds to cellular sheaves and back, C.

Battiloro et al., IEEE ICASSP 2023
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Tangent Bundle Convolutional Learning
From Manifolds to Cellular Sheaves and Back

We introduce a novel convolution operation for tangent bundle signals, i.e. vector fields
over Riemann manifolds

We define tangent bundle filters and tangent bundle neural networks (TNNs)

The proposed convolution generalizes most of the well-known convolutions

We show, for the first time, that Sheaf Neural Networks (a generalization of Graph Neural
Networks) converge to TNNs as the number of nodes goes to infinity

We numerically evaluate the effectiveness of TNNs on various learning tasks
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Conclusions
In this thesis, we have shown that the exploration and exploitation of topological signal
processing methods can unveil transformative potential in understanding complex data
structures and extracting meaningful insights

The marriage of topology and signal processing offers a robust framework for analyzing
non-trivial data configurations, capturing intricate multi-way patterns often overlooked by
traditional and graph-based methods

As the field continues to evolve, it is anticipated that topological signal processing
techniques will become an indispensable tool in the arsenal of modern data analysis and
processing.

My Linkedin https://www.linkedin.com/in/claudio-battiloro-b4390b175/ and X
https://twitter.com/ClaBat9:
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Simplicial Signal Processing
Frequency Domain

Simplicial signals of various order can be represented over the bases of the eigenvectors of
the high order Laplacians

Using the eigendecomposition L1 = UΛUT , the Simplicial Fourier Transform (SFT) of
order 1 of a simplicial (edge) signal x is defined as:

x̃ ≜ UT x

We refer to the eigenvalue domain (set) A of the SFT as the frequency domain

High order Laplacians admit a Hodge decomposition, e.g. the 1-simplicial (edge) signal
space can be decomposed as:

RE = im
(
BT

1

)⊕
im
(
B2

)⊕
ker
(
L1

)
,

Therefore, the eigenvalues of L1 are the union of the non-zero eigenvalues Fu of Lu, the
non-zero eigenvalues Fd of Ld and the zero eigenvalue of multiplicity dim(Ker(L1))
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Topological Slepians
Localization and Concentration Sets

To formalize the concept of localization, we need two concentration operators

Fix an edge concentration set S ⊂ E. The edge-limiting operator on S is defined as:

CS = diag(1S)

where 1S ∈ RE is a vector having ones in the indices specified in S, and zero otherwise.
An edge signal x is perfectly localized onto the set S if CSx = x

Fix a frequency concentration set F ⊂ A. The frequency-limiting operator on F is
defined as:

BF = Udiag(1F )UT ,

An edge signal x is perfectly localized over the bandwidth F if BFx = x
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Topological Slepians
Problem Formulation

Topological Slepians are the set of orthonormal vectors that are maximally concentrated
over S, and perfectly localized onto F

Formally, they are the set of vectors solving the problem:

ψi =argmax
ψi

||CSψi||22

subject to

(a) ||ψi|| = 1, (b) BFψi = ψi, (c) < ψi,ψj >= 0

The solution are the eigenvectors of the operator BFCSBF , i.e.:

BFCSBFψi = λiψi, λ1 ≥ λ2 ≥ ... ≥ λC > 0

Let ΨS,F be the set of slepians corresponding to the concentration sets S and F . An
(overcomplete) dictionary of topological slepians is of the form:

DC =
[
ΨS1,F1

, ...,ΨSi,Fi
, ...,ΨSM ,FM

]
,

collecting M sets of slepians obtained from the pairs of concentration sets {Si,Fi}Mi=1
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Let ΨS,F be the set of slepians corresponding to the concentration sets S and F . An
(overcomplete) dictionary of topological slepians is of the form:

DC =
[
ΨS1,F1

, ...,ΨSi,Fi
, ...,ΨSM ,FM

]
,

collecting M sets of slepians obtained from the pairs of concentration sets {Si,Fi}Mi=1
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Topological Slepians
Problem Formulation
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(overcomplete) dictionary of topological slepians is of the form:
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, ...,ΨSi,Fi
, ...,ΨSM ,FM
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Topological Slepians
Example of Slepians

(d) Concentration Set
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(g) 3rd Slepian
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