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Good computational power at the edge devices 
Communication is usually expensive 
Challenge: reducing the amount of communication

In this thesis: 
- Design communication efficient algorithms 
- Analyze the effect of communication constraints on algorithms’ convergence

Federated Learning
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Distributed gradient descent
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Pros: scales well 

Cons: convergence rate heavily impacted by the condition number
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Pros: superlinear convergence speed independent of the condition number 

Cons: significantly more demanding from a computation and communication point of view
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Approximate Newton method

Question: can we provide superlinear convergence in a communication-efficient way?

N. Dal Fabbro, S. Dey, M. Rossi and L. Schenato, “SHED: A Newton-type algorithm for federated learning based on incremental 
Hessian eigenvector sharing”, 2024, Automatica

N. Dal Fabbro, M. Rossi, L. Schenato, S. Dey “Q-SHED: Distributed Optimization at the Edge via Hessian Eigenvectors 
Quantization”, IEEE International Conference on Communications, Rome 2023
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SHED: a Newton-type algorithm for FL based on eigendecomposition



Strengths of SHED

• Global convergence with asymptotic superlinear rate 

• Versatility - each agent can share a number of eigenvectors based on their  
communication resources 

• Only sporadic Hessian computations required 

N. Dal Fabbro, S. Dey, M. Rossi and L. Schenato, “SHED: A Newton-type algorithm for federated learning based on incremental 
Hessianeigenvector sharing”, Automatica, 2024 31
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• Goal 
• Finite-sample convergence guarantees 
• Achieve a linear convergence speedup 

w.r.t. the number of agents N 

• Challenges 
• Markovian sampling 
• Communication constraints 
(e.g., wireless networks)

Server

Agent 1 Agent N

Is it possible to provide finite-sample analysis for federated 
reinforcement learning under communication constraints?
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Federated Learning

Server

Chen, Mingzhe, et al. "A joint learning and communications framework for federated learning 
over wireless networks." IEEE Transactions on Wireless Communications  (2020)

Konečný, Jakub, et al. "Federated learning: Strategies for improving communication efficiency."  
arXiv preprint arXiv:1610.05492 (2016).

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. (2020). Federated learning: Challenges, 
methods, and future directions. IEEE signal processing magazine, 37(3), 50-60.

Distributed optimization under communication constraints

Amiri, Mohammad Mohammadi, and Deniz Gündüz. "Federated learning over wireless fading 
channels." IEEE Transactions on Wireless Communications 19.5 (2020): 3546-3557.
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Communication 
Constraints

Federated 
Reinforcement  

Learning

Finite-
sample 

convergence 
guarantees 

Linear 
convergence 

speedup with N

Contributions

We provide the first finite-sample convergence analysis for federated 
reinforcement learning under communication constraints, establishing a linear 
convergence speedup with the number of agents
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Finite-sample analysis of this update rule under Markovian sampling has been recently established and provides 

                                                               

                                                                                

Bhandari, Jalaj, Daniel Russo, and Raghav Singal. "A finite time analysis of temporal difference learning with linear function 
approximation." Conference on learning theory, 2018 

Srikant, Rayadurgam, and Lei Ying. "Finite-time error bounds for linear stochastic approximation andtd learning." Conference on Learning 
Theory, 2019 

Temporal difference (TD) learning

approximation error after         iterations
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Federated TD learning

Agent 1
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TD update direction of agent     at iteration 

Observation of agent     at iteration   
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Server

TD update direction of agent     at iteration 

Observation of agent     at iteration   

Federated TD learning over quantized communication: QFedTD

QAgent 1

Agent N

N. Dal Fabbro, A. Mitra, G. J. Pappas, "Federated TD Learning over Finite-Rate Erasure Channels: Linear Speedup under Markovian Sampling". IEEE 
Control Systems Letters, 2023 47



Over-the-air federated TD learning: OAC-FedTD

noise

Server

TD update direction of agent     at iteration 

Observation of agent     at iteration   

N. Dal Fabbro, A. Mitra, R. W. Heath, L. Schenato, G. J. Pappas, "Over-the-Air Federated TD Learning" MLSys 2023 Workshop on Resource-Constrained 
Learning in Wireless Networks, Miami, Florida, 2023

Agent 1

Agent N
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noise

Server

Channel distortion for agent     at iteration 

Measurement noise 
at the receiver

TD update direction of agent     at iteration 

Observation of agent     at iteration   

N. Dal Fabbro, A. Mitra, R. W. Heath, L. Schenato, G. J. Pappas, "Over-the-Air Federated TD Learning" MLSys 2023 Workshop on Resource-Constrained 
Learning in Wireless Networks, Miami, Florida, 2023

Agent 1

Agent N

49

Over-the-air federated TD learning: OAC-FedTD



Finite-Time Analysis of Asynchronous Multi-Agent TD Learning

Asynchronous multi-agent TD learning: AsyncMATD

50

Agent 1

Agent N

Server

  TD update direction of agent  at 

iteration 

gi,k(θk, oi,k) i
k

  observation of agent      

at iteration    

oi,k = (si,k, ri,k, si,k+1) i
k

τ1,k

τN,k

delayed updates and observations

θk+1 = θk + αvkAt the Server: vk =
1
N

N

∑
i=1

gi,k (θk−τi,k
, oi,k−τi,k)



If               small enough, then the iterates of QFedTD are such that 

Main takeaways: we show the impact of the channel effects        and        on 
the convergence. We establish a linear convergence speedup with the 
number of agents      .  We obtain a linear dependence on the mixing time of 
the Markov chain,     .

Theorem (convergence analysis of QFedTD) 

Main Result
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Future directions

Superlinear FL: 
• Scaling up existing algorithms from a computational point of view 

FRL: 
• Heterogeneity/personalization, local optimization 

 Federated Multi-Agent reinforcement learning 
sample complexity and communications even more critical 
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