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Research Objective and Motivation
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Research Objective

Research

Title: Emergent self-awareness in multi-sensor physical agents

Self-awareness (SA) + Awareness:
knowledge of state and surroundings.

Emergent: knowledge acquired in an unsupervised way.

The agent learns what is new in unseen situations.

Development of self-aware models for autonomous vehicles that leverage the combination of
multiple sensors. Focus is given to the video sensor.
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Autonomous Vehicles

Vehicles designed to diminish or eliminate the need for human intervention in the execution of their tasks.
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Anomaly Detection

¢ Anomaly detection = process of recognition that an observation or an experience differs from
observations and experiences learned in the training phase of a model.
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¢ Application examples: video surveillance, medical image analysis, traffic accident detection etc..

[a] V. Mahadevan et al., “ Anomaly detection in crowded scenes,” CVPR, 2010.
[b] A. Adam et al., “Robust real-time unusual event detection using multiple fixed-location monitors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 3, 2008
7/35 [c] P. Marin-Plaza et al., “Stereo vision-based local occupancy grid map for autonomous navigation in ros,” VISIGRAPP, 2016.



Anomaly Detection and Localization (1)
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Anomaly Detection and Localization (2)

Application examples:

+* Patrolling robot. +» Fault detection.

2/l
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9 /‘35 Images taken from: https://mashable.com/article/singapore-police-patrol-surveillance-robots and https://www.dnv.com/expert-story/maritime-impact/The-drone-squad-for-ship-surveys.html|


https://mashable.com/article/singapore-police-patrol-surveillance-robots
https://www.dnv.com/expert-story/maritime-impact/The-drone-squad-for-ship-surveys.html

Comparison with the State of the Art of Cognitive SA Architectures

s Few self-awareness approaches have been presented throughout the years, as this area is still in its infancy.
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Architecture

P = potentially

[a] L.A. Dennis, M. Fisher, “Verifable self-aware agent-based autonomous systems”, Proceedings of the IEEE, vol. 108, n. 7, pp. 1011-1026, 2020.
[b] R. Golombek, S. Wrede, M. Hanheide, M. Heckmann, “Learning a probabilistic self-awareness model for robotic systems”, IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 2745-2750, 2010.
[c] R. Chatila et al., “Toward self-aware robots”, Frontiers in Robotics and Al, vol. 5, n. 88, 2018
10/35 [d] Y. LeCun, “A Path Towards Autonomous Machine Intelligence”, OpenReview Archive, 2022
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Probabilistic
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Sensor
observations

Xi}e=1 .k
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Learning the Markov Jump Particle Filter

Zk}k=1 .k

With Zx = [Zk, Zk]
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Switching Linear Dynamical Systems for Images

Problem: Switching Linear Dynamical Systems can
not be directly applied to data coming from high-

dimensional sensors. P(S:11|Se) Semantic
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General Architecture [a]
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15/35 [a] C. Regazzoni et al., “Probabilistic Anomaly Detection Methods Using Learned Models from Time-Series Data for Multimedia Self-Aware Systems,” in “Advanced Methods

and Deep Learning in Computer Vision”, E. R. Davies, O. Camps, M. Turk, 1st October 2021.
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A selection of methods and results
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Single-sensor

Multi-sensor
architectures
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architectures
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Applicable Data
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Multilevel anomaly detection Through Variational Autoencoders and Bayesian
Models for self-aware Embodied Agents
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Method Introduction

Objective:

Multi-level anomaly detection performed on video data (from static or moving cameras).

Probabilistic, Data-Driven, Hierarchical, Explainable

I

I

I

I Multi-sensorial

I

I Homogeneity with the low-dimensional case
I
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Training Phase
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VAE to train
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Testing Phase
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Qualitative Results: Anomaly Detection
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Quantitative results on various datasets

- AUC Img. Rec. Err. | AUC Img. Pred. Err. | AUC KLDA

m [a], original 0.882 0.896 0.775
- [a], additional  0.865 0.879 0.818
- [b] 0.902 0.910 0.818
m [b] 0.731 0.732 0.604
- [c] 0.727 0.737 0.626
m [d] 0.862 0.851 0.671
[a] 0.81 0.87 0.77
[a] 0.94 0.91 0.8

[a] 0.82 0.81 0.81

[a] G. Slavic, M. Baydoun, D. Campo, L. Marcenaro, and C. Regazzoni, “Multilevel Anomaly Detection Through Variational Autoencoders and Bayesian Models for Self-Aware
Embodied Agents,” IEEE Transactions on Multimedia, vol. 24, pp. 1399-1414, 2021

[b] J. Kim, and K. Grauman, “Observe locally, infer globally: A space-time MRF for detecting abnormal activities with incremental updates,” Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 2921-2928, 2009

[c] V. D. de Gevigney, P. Marteau, A. Delhay, and D. Lolive, “Video latent code interpolation for anomalous behavior detection,” International Conference on Systems, Man, and
Cybernetics (SMC), pp. 3037-3044, 2020

y [d] C. Lu, J. Shi, and J. Jia, “Abnormal event detection at 150 FPS in MATLAB,” IEEE International Conference on Computer Vision (ICCV), pp. 2720-2727, 2013
24/35



Comparison with other state-of-the-art methods

Year Interpretability | No additional
/Explainability | supervision

[a] 0.702 0.807 0.943 2016 X v
[b] 0.803 0.940 0.847 2017 X v
[c] 0.892 0.946 0.902 2019 X v
[d] 0.823 0.932 0.806 2020 X v
Ours 0.862 0.910 0.732 2021 v v
[e] 0.866 - - 2021 v X
[f] 0.883 - - 2022 v X
[g] 0.860 - - 2023 v X

[a] M. Hasan, J. Choi, J. Neumann, A. K. Roy-Chowdhury, and L. S. Davis, “Learning temporal regularity in video sequences”, IEEE Conference on Computer Vision and Pattern
Recognition, pages 733—-742, 2016
[b] Y. S. Chong, and Y. H. Tay, “Abnormal event detection in videos using spatiotemporal autoencoder”, Advances in Neural Networks - International Symposium on
Neural Networks, vol. 10262, pages 189—-196, 2017
[c] H. Song, C. Sun, X. Wu, M. Chen, and Y. Jia, “Learning normal patterns via adversarial attention-based autoencoder for abnormal event detection in videos ”, IEEE Transactions on
Multimedia, vol. 22, n. 8, pp. 2138-2148, 2020
[d] V. D. de Gevigney, P. Marteau, A. Delhay, and D. Lolive, “Video latent code interpolation for anomalous behavior detection,” International Conference on Systems, Man, and
Cybernetics (SMC), pp. 3037-3044, 2020
[e] S. Szymanowicz, J. Charles, and R. Cipolla, “X-MAN: explaining multiple sources of anomalies in video”, In IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pp. 3224-3232, 2021
[f] S. Szymanowicz, J. Charles, and R. Cipolla, “Discrete neural representations for explainable anomaly detection”, In IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 1506-1514, 2022

/ [g] A. Singh, M. J. Jones, and E. G. Learned-Miller, “EVAL: explainable video anomaly localization”, In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18717-

25/35 18726, 2023



Vehicle Localization and Anomaly Detection for Video Surveillance in a Dynamic Bayesian
Network Framework
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Method Introduction

Objectives:

Multi-level anomaly detection performed on video and odometry data.

+ Visual-Based Localization.

I Probabilistic, Data-Driven, Hierarchical, Explainable, Multi-sensorial
I

I Increased homogeneity with the low-dimensional case
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Training Overview

Odometry data {x%};=1 + o Camera data {x¢};=1.¢
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Coupled Dynamic Bayesian Network
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Positioning and Anomaly Estimation Example
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Quantitative results and comparisons

_ iCab Emergency Stop Drone Frontal Motion Drone Lateral Motion

Methods LR 160 032 23.00 23.00 0.20 0.16 0.47 0.25
without TSRV 361  0.39 23.00 23.00 0.20 0.16 0.86 0.33
pre-trained T 859  7.66 23.88 22.78 0.89 0.76 1.83 1.14
models
_ 1.65  0.96 0.98 0.75 0.23 0.14 0.87 0.38
IR-IV3 [a] 073 0.8 1.28 0.61 0.18 0.16 0.32 0.20
IR-TC-IV3 [a] ] ] 0.72 0.60 0.18 0.16 0.32 0.20
Methods  FTEINE AV 217  1.38 ] ] ] ] ] ]
with IR-TC-VGG16 [a] 052 028 ; ] ; ] ; ;
pre-trained
models IR-TR-TC-VGG16 [a] 044  0.29 ] ] ] ] ] ]
REG-SVR-PNET-RGB-VGG16 [a] [ ) ] ) ] ] ]
REG-PNET-RGB-POS-IV3 [a] 042  0.29 1.52 1.15 0.24 0.20 0.74 0.71

IR = image retrieval; TC= Temporal Constraint; ENC = encoder; PNET = PoseNet; SVR = Support Vector Regression; POS = position

[a] E. Spera, A. Furnari, S. Battiato, and G. M. Farinella, “Egocart: a benchmark dataset for large-scale indoor image-based localization in retail stores,” IEEE
31/35 Trans. Circuits Syst. Video Technol., vol. 31, pp. 1253—-1267, Sept. 2021.



Conclusions and Future Work
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Conclusions

+* The development of self-awareness architectures for autonomous vehicles inspired from human
reasoning, and that incorporate characteristics such as being probabilistic, hierarchical, data-driven,
explainable, and multi-sensorial;

** The use of anomaly detection inside this architecture to identify new rules that continually emerge
from the data and that indicate the necessity to build a new model;

** The employment of low and high dimensional data, which should be handled as homogeneously as
possible;

¢ The localization of the vehicle in the environment, as an additional capability of the architecture .



Future Work

+* Closing the Continual Learning cycle;

%* Further explaining the anomalies;

** Further analyzing the anomalies;

¢ Inserting other sensory modalities;
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Thank you for your attention
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